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The vibration analysis of sti!ened plates using hierarchical "nite elements with a set of
local trigonometric interpolation functions is presented. The local functions extend on the
plate domain comprised between consecutive sti!eners, thereby allowing a coarse discreti-
zation of the global structure. Convergence studies as well as comparison of the present
approach with the literature and experimental results are presented. The great numerical
stability of the trigonometric functions and their readiness for symbolic manipulations make
them potentially attractive for vibration and sound radiation analysis in the mid-frequency
range.
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1. INTRODUCTION

Sti!ened plates form an important class of engineering structures and are frequently
encountered in ship or aircraft structures; the structural acoustics of sti!ened plates is thus
of interest with respect to the dynamics/noise aspects of such structures. Unfortunately,
exact analytical methods are usually limited to the "rst few vibration modes, while
approximate statistical methods are con"ned to high frequency. This work addresses a new
and computationally e$cient method of solving the vibration of plates reinforced by an
array of orthogonal sti!eners, which should allow the predictions to be extended towards
the mid-frequency range.

The analysis of sti!ened plate vibration has been the subject of numerous work, mainly
using the Rayleigh}Ritz technique or the "nite element method (FEM). Earlier work using
the Rayleigh}Ritz technique includes publications by Wu et al. [1], Laura et al. [2], Bhat
[3], Gutierrez et al. [4], who considered pure bending deformation of the plate and
essentially bending and torsion deformation of the sti!eners; other authors, e.g., Liew et al.
[5, 6], Xiang et al. [7], have re"ned the models by considering a Mindlin plate model,
including rotary inertia and transverse shear, as well as bending, torsion and transverse
shear deformations of the sti!eners; Berry et al. [8] also included in-plane deformation of
the plate and extensional deformation of the sti!eners. Other geometries have also been
considered such as sti!ened skew plates [7] and sti!ened sector plates [9]. The sound
radiation of sti!ened plates has been investigated by Mace [10}12], Mead [13] and others
for in"nite and periodically sti!ened plates and by Berry et al. [14, 8] and others for "nite
plates. Most of these studies used polynomial trial functions de"ned on the whole domain of
the sti!ened plate. In some situations, e.g., when heavy sti!eners are considered, such global
trial functions have di$culties in reconstructing rapid spatial changes of the vibration "eld
close to the sti!eners [8]; this results in ill-conditioned systems and inaccurate prediction.
22-460X/00/350727#21 $35.00/0 ( 2000 Academic Press
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On the other hand, the FEM uses a discretization of the global structure and
interpolation functions which are local in nature. However, model size limitations still
restrict conventional FEM to low frequency. In order to overcome these limitations,
alternatives to the conventional FEM have been proposed: Koko et al. [15] have developed
the so-called &&super-elements'' to model the free vibration of sti!ened plates; these super-
elements allow a coarser mesh to be considered (at the expense of more complex
interpolation functions), typically one or a few elements between adjacent sti!eners. Chen et
al. [16] used a spline compound strip method where the plate is being divided into "nite
strips and splines are used as trial functions. CoteH [17] has applied the p-version of the FEM
to several structural acoustics problems, including the vibration of sti!ened plates; in the
p-version of the FEM, the mesh of the structure is "xed and the order of the polynomial
interpolation functions is increased until convergence is reached. In terms of CPU and
memory requirements, there is a clear bene"t of using the p-FEM as compared to
conventional FEM when reaching the mid-frequency range. Bardell [18] has developed
a hierarchical FEM, for the free vibration of plates; a distinct advantage of the hierarchical
FEM is that the system matrices for a given interpolation order can be used to form the
matrices for a larger interpolation order. The interpolation functions used by Bardell are
based on integrated Legendre orthogonal polynomials. Bardell used symbolic computing to
calculate high order polynomial coe$cients and matrix elements. These functions have been
applied to the free vibration of periodically sti!ened, in"nite #at plates [19]; in this case,
plate bays present between adjacent sti!eners formed single elements. Recently, Beslin et al.
[20] have proposed a set of trigonometric hierarchical functions in order to predict high
order modes of vibration of bending plates with arbitrary boundary conditions. The
trigonometric set o!ers better numerical stability at higher frequency, as compared to the
polynomial set of Bardell.

In this study, the hierarchical trigonometric functions of Beslin are used as local trial
functions in the prediction of sti!ened plate vibration. The local functions are de"ned on the
plate domain present between consecutive sti!eners, thereby allowing a coarse
discretization of the global structure. In addition to their simplicity and numerical stability,
the trigonometric functions lend themselves to the use of exact, symbolic integration and
lead to simple inter-element conditions at the sti!ener locations. In the following, the
theoretical formulation is detailed and numerical results are shown for both unsti!ened and
sti!ened plates.

2. ENERGY EXPRESSIONS

We "rst consider a rectangular, #at, isotropic plate (referred to as a &&plate element'') of
dimensions a, b, thickness h, subject to pure bending deformation. Figure 1 shows this plate
element and the corresponding co-ordinate systems. Non-dimensional co-ordinates
m"(2/a)x!1, g"(2/b)y!1 are used in the following, such that the plate element
corresponds to !1)m)#1 and !1)g)#1.

The kinetic energy of the plate is given by
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where w (m, g) is the transverse displacement and o is the density of the plate material. The
strain or bending energy of the plate is
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Figure 1. A plate element.

Figure 2. Sti!ener elements.
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where D"Eh3/(12(1!l2)) is the bending sti!ness and l is the Poisson ratio of the
plate.

We now consider two orthogonal, beam-like sti!eners attached to the plate at positions
x"a (&&y-wise sti!ener'') and y"b (&&x-wise sti!ener'') (Figure 2). It is assumed that, as



Figure 3. Sti!ener geometric characteristics.
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a result of the plate bending, the sti!eners are subject to bending and torsion deformations.
Also, the attachment of the sti!eners to the plate is lineic and at each attachment point, the
continuity of displacements and rotations is assumed between the plate and sti!ener;
therefore, all displacements and strains of the sti!eners can be expressed as a function of the
plate displacement w (m, g). Details on the displacements, strains and energy expressions
regarding the sti!eners can be found in reference [14].

The kinetic energy of the y-wise sti!ener is given by
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where m
y
is the location of the y-wise sti!ener. In our case (Figure 2), m

y
"1. Also, o

y
is the

density of the y-wise sti!ener, S
y
is the cross-section area, I

xx
and I

zz
are second moments of

inertia with respect to the sti!ener's center of inertia G, and x6 and z6 de"ned the position of
the plate}sti!ener junction O with respect to the sti!ener's center of inertia (Figure 3).

The strain energy of the y-side sti!ener is
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where E
y

is the Young's modulus, G
y

is the shear modulus and J
y

is the (Saint-Venant)
torsion constant of the y-wise sti!ener. The "rst term in the strain energy stands for the
bending and the second term stands for the torsion of the sti!ener. The kinetic energy
¹
x
and strain energy<

x
of the x-wise sti!ener are obtained by permuting a and b, x and y as

well as m and g in equations (3) and (4).



Figure 4. A plate with an array of orthogonal sti!eners.
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The Hamilton functional of the plate}sti!eners system is
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Finally, let us consider a bending plate reinforced by an array of orthogonal sti!eners
(Figure 4). Such a structure can be viewed as an assembly of plate elements with attached
x-wise and y-wise sti!ener elements, as considered previously. Local co-ordinates systems
(xi, yi) and (mi, gi) are de"ned for each elements i.

Since the global structure is formed by assembling plate and sti!ener elements, it is planar
but its geometry is not necessarily rectangular; also, the array of sti!eners is not necessarily
periodic as the dimensions of the elements may vary, and the plate and sti!ener properties
can vary from one element to an other. The boundary conditions along the sides of the plate
elements that de"ne the contour of the global plate can be taken as simply supported,
clamped or free, and may vary from one plate element to another.

The Hamilton functional of the global structure is

H"P
t2

t1

(¹!<) dt, (6)

where ¹"+
i
(¹i

p
#¹i

x
#¹i

y
) and <"+

i
(<i

p
#<i

x
#<i

y
). The summation is done on all the

plate elements and sti!eners of the global structure. The variational principle states that the
free vibration of the global structure satis"es

dH"0. (7)

3. RAYLEIGH}RITZ METHOD

3.1. LOCAL TRIGONOMETRIC TRIAL FUNCTIONS

The local displacement "eld wi (mi,gi, t) on the element i is expressed as
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where /
m
(mi) an /

n
(gi) are trial functions, Mi and Ni are the numbers of functions along the

x and y directions, and the qi
mn

are the local unknown Rayleigh}Ritz coe$cients, de"ned on
the element i. In this work, the trigonometric functions introduced by Beslin [20] are used
as the trial functions.

The trigonometric set M/
m
(m)N is de"ned as
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where coe$cients a
m
, b

m
, c

m
, d

m
are given in Table 1. The functions /

m
are plotted in Figure

5. These function have useful properties, their shape, similar to the polynomial functions of
Bardell allows arbitrary boundary conditions to be speci"ed by selecting proper
combinations among the "rst four functions. These functions also allow a simple assembly
of plate elements as will be shown in section 4. The most attractive particularity of the
trigonometric function is that they o!er great numerical stability and, contrary to the
polynomial functions, do not require special attention to the round-o! errors. Beslin [20]
showed that very high expansion orders can be used in equation (8) so that the medium
frequency range can be approached with a reasonable number of trial functions.

3.2. ELEMENTARY MASS AND STIFFNESS MATRICES

Substituting equation (8) into equation (1), the kinetic energy of the plate element i is
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Similarly, the strain energy of the plate element i is
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Figure 5. Graphical representation of the "rst eight trigonometric functions. The value of the functions and their
derivatives at the end points is reported.

STIFFENED PLATES 733
where Ki
p

is the elementary sti!ness matrix of the plate element i,
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The terms Iab
mr

in equations (11) and (13) are de"ned by the integrals
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Given the simple expression of the trial functions, these integrals can be calculated
analytically.

The kinetic energy of the y-wise sti!ener on plate i is given by
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The strain energy of the x-wise sti!ener on plate i is
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The corresponding expressions for the x-wise sti!ener are obtained by permuting a and b,
x and y as well as m and g. Again, the mass and sti!ness matrices of the sti!eners can be
calculated analytically.

Summing the elementary energy contributions over all the elements of the global
structure allows the kinetic energy ¹ and the strain energy < of the global structure to be
written as

¹"q5 TMq5 , <"qTKq, (19, 20)
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where q"Mq1; q2;2; qi;2; qNpN is the vector of the Rayleigh}Ritz coe$cients for the
assembly of the N

P
plates and
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are the elementary mass and sti!ness matrices respectively. Application of the variational
principle to the global structure leads to the eigenvalue problem

Hq"0, (24)

where H"!u2M#K and u is the angular frequency.

3.3. FORCED RESPONSE
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f i (mi, gi) represents the transverse force per unit of area on element i. If the excitation is
a point force at (mi
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, gi

0
), f i(mi, gi)"f id (mi!mi

0
)d (gi!gi

0
), this leads to

f i
mn
"

aibi

4
f i (mi

0
, gi

0
)/

m
(mi

0
)/

n
(gi

0
). (28)

The global force vector is f"Mf1; f2;2; f i;2N and the forced response of the global
structure is the solution of the linear system

(!u2M#K)"f. (29)

4. INTER-ELEMENT CONDITIONS*CONDENSATION OF THE GLOBAL MASS
AND STIFFNESS MATRICES

The global mass and sti!ness matrices are obtained by assembling the previous
elementary matrices. The continuity conditions at the interface between adjacent elements
are now used to condense the global mass and sti!ness matrices.



Figure 6. Illustration of the inter-element continuity.
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Referring to Figure 6, the continuity between elements i and i#1 requires equality of the
plate displacement and slope at the interface between elements i and i#1, for
!1)gi)#1:
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Here, the values of the trigonometric trial functions at the end points !1 and #1 are
used to simplify the above expressions. Using the results of Figure 5, we note that
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Hence, the displacement and slope continuity conditions become
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Since the functions /
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(gi) form a basis on !1)gi)#1, the above equalities reduce to
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for 1)n)N. Alternatively, if elements i and i#1 have an interface parallel to the x-axis,
the continuity of the plate displacement and slope requires
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for 1)m)M. Thus, due to the properties of the proposed trigonometric functions at the
end points !1 and #1, the displacement and slope continuity at the interface of adjacent
elements translate into simple conditions on the unknown Rayleigh}Ritz coe$cients of
adjacent elements. These conditions allow the global eigenvalue problem to be condensed
by eliminating the redundant Rayleigh}Ritz coe$cients. The condensation procedure is
brie#y explained in what follows.

In order to simplify the notations and the presentation, we temporarily denote
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like in equations (38) and (42). This condition allows the two dependent degrees of freedom
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The Hamilton functional takes the form
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This expression can be modi"ed to isolate the redundant degree of freedom q
g
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Setting LH/Lqk for all k yields the condensed system where the degree of freedom q
g

is
now eliminated,
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Thus, the condensation consists of linearly combining the rows and columns associated
to the dependent degrees of freedom. This procedure is repeated for all the dependent
degrees of freedom, as obtained from the inter-element continuity conditions. The
condensed eigenvalue problem is then solved for the eigenfrequencies and mode shapes of
the global structure.

5. NUMERICAL RESULTS FOR A HOMOGENEOUS PLATE

In a "rst instance, the method has been applied to a homogeneous (non-sti!ened) plate in
order to test the convergence properties of the method. The non-sti!ened plate is simply
a particular case where all sti!ener energies are set to zero. A square, homogeneous,
rectangular plate of dimensions 1)2m]1)0m, thickness 2)5mm, made of steel material
(E"200GPa, o"7800 kg/m3, l"0)3) has been considered in these simulations. The plate
is simply supported, so that the calculated eigenfrequencies can be compared to the exact

solutions, f
ij
"1/2nJ(D/oh)[(in/a)2#( jn/b)2], where i, j are mode indices. Simply

supported boundary conditions are realized by removing in the Rayleigh}Ritz expansion
the hierarchical trigonometric functions which take a non-zero value on the plate edges. In
the context of hierarchical "nite elements, two discretization parameters need to be
considered: the size of the elements, and the degree of the interpolation functions over each
element. In this simulation, the plate was meshed using the various con"gurations shown in
Figure 7 (either 1]1, 2]1, 2]2 or 4]4 plate elements), and a variable number of
hierarchical trigonometric functions was considered over each element. Of interest here is
whether large elements with many local hierarchical functions, or small elements with few
local hierarchical functions, are preferable.

Table 2 shows the results obtained for the various con"gurations; the second column
gives the number of hierarchical functions used on each element, the third column gives the
total number of degrees of freedom (d.o.f.) of the system after imposing the boundary
conditions and the inter-element conditions, and the last two columns give the number of
eigenfrequencies calculated with an error less than 1% and less than 2% with respect to the
exact eigenfrequencies respectively. These results show that, for a given total number of
d.o.f. the number of eigenfrequencies calculated with a given accuracy is in most cases larger



Figure 7. Various meshes for a homogeneous, simply supported plate: (a) 1]1 element, (b) 2]1 elements,
(c) 2]2 elements, (d) 4]4 elements.

TABLE 2

Results for a homogeneous, simply supported plate

No. of modes No. of modes
Mesh M

i
]N

i
d.o.f. within 1% error within 2% error

1]1 14]14 144 45 45
2]1 8]14 144 35 58
2]2 8]8 144 35 58
4]4 5]5 144 0 0

1]1 34]34 1024 527 629
2]1 18]34 1024 439 593
2]2 18]18 1024 430 586
4]4 10]10 1024 249 505

1]1 50]50 2304 1423 1502
2]1 26]50 2304 1369 1451
2]2 26]26 2304 1203 1441
4]4 14]14 2304 953 1300

1]1 62]62 3600 2312 2418
2]1 32]62 3600 2210 2340
2]2 32]32 3600 2210 2311
4]4 17]17 3600 1884 2127
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when large elements and many hierarchical functions are considered, instead of small
elements and few hierarchical functions.

Figure 8 shows the number of modes calculated within a 2% error, as a function of the
number of d.o.f. for three di!erent meshes: 1]1, 2]1, 2]2 and 4]4 elements. This plot



Figure 8. Convergence of the method for a homogeneous, simply supported plate. Numbers of modes within
2% error for 1]1 mesh (h); 2]1 mesh (#); 2]2 mesh (L); 4]4 mesh (n).
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shows that, again, a coarser mesh with a larger number of local functions is preferable for
more accurate results. Additionally, the relation between the number of modes within a 2%
error and the number of d.o.f. is almost linear. This is in fact consistent with the requirement
that enough test functions should be used with regard to the smallest structural wavelength
to be observed in the plate. If one de"nes the structural wavelength j at the frequency f,

j"J2nA
D

ohB
1@4

f ~1@2, (51)

then the number of test functions Ni used in a given direction at the frequency f must be
a constant times the number of wavelengths to be observed along the corresponding
dimension of the element, a/j. It was found that a value of 3 times the number of
wavelengths a/j is su$cient to guarantee the convergence within a 2% error.

6. NUMERICAL RESULTS FOR STIFFENED PLATES

6.1. CONVERGENCE STUDY

The same simply supported plate as in section 5 is considered, with a y-wise sti!ener
passing through the center of the plate. The sti!ener has a rectangular cross-section with
height 20 mm and width 10 mm and the same material characteristics as the plate. Various
meshes represented in Figure 7 were also considered, with a variable number of hierarchical
trigonometric functions over each element.

In each case, the sti!ener was positioned at the edge of one element except for the 1]1
mesh where the sti!ener was located at the center of the element by setting m

s
"0 in

equations (16) and (18).
The numerical results are shown in the Table 3. The results show that the number of

converged modes in the sti!ened and unsti!ened cases are comparable in the various



TABLE 3

Results for a sti+ened simply supported plate; a 2]1 mesh with 4352 d.o.f. was used to compute
the 00exact11 solution for the sti+ened plate

No. of modes No. of modes (unsti!ened)
Mesh M

i
]N

i
d.o.f. within 1% error (unsti!ened) within 2% error

1]1 14]14 144 1 (45) 2 (45)
2]1 14]8 144 15 (35) 52 (58)
2]2 8]8 144 15 (35) 52 (58)
4]4 5]5 144 0 (0) 0 (0)

1]1 34]34 1024 8 (527) 176 (629)
2]1 34]18 1024 399 (439) 574 (593)
2]2 18]18 1024 399 (430) 574 (586)
4]4 10]10 1024 235 (249) 481 (505)

1]1 50]50 2304 95 (1423) 1406 (1502)
2]1 50]26 2304 1150 (1369) 1424 (1451)
2]2 26]26 2304 1150 (1203) 1424 (1441)
4]4 14]14 2304 835 (953) 1274 (1300)
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con"gurations. Also, coarser meshes with a large number of interpolation functions are
preferable to re"ned meshes with few interpolation functions, as in the case of the
unsti!ened plate.

When the sti!ener is placed between two elements (2]1, 2]2, 4]4 meshes), the number
of converged modes is comparable to the number of modes without sti!ener. Therefore, the
rules to determine the number of functions needed is similar in the unsti!ened and sti!ened
cases.

There are convergence problems with the 1]1 mesh. This is due to the inability of global
functions to reconstruct the local modes of the sti!ened plates. When heavy sti!eners are
considered, most of the modes are local and the transverse displacement is small at the
sti!ener location. The global functions are not necessarily null at the sti!ener location and
this leads to poor convergence. Imposing the sti!ener to be at the interface between two
elements allows local modes to be more easily reconstructed.

6.2. COMPARISON WITH THE LITERATURE

There are no exact solutions of the eigenfrequencies of "nite, sti!ened rectangular plates.
Therefore, comparisons of the present method with other numerical results reported in the
literature are presented in this section. Koko et al. [15] have presented simulations of the
free vibration of sti!ened plates using the so-called `super-elementsa; plate and beam
super-elements were developed by these authors in order to model the free vibration of
sti!ened plates.

In Koko's work, the plate element accounts for both in-plane and transverse
displacements. Each element has 55 variables and displacements are represented by
analytical and polynomial functions. A mix of quadratic Lagrange polynomials, cubic
Hermitian polynomials and trigonometric (sine) functions are used as interpolation
functions. In addition to the in-plane and out-of-plane bending displacement, torsional



Figure 9. Con"guration of sti!ened plates for comparisons with Koko et al. [15]: (a) case 1, (b) case 2, (c) case 3,
(d) case 4.
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rotation and lateral bending displacement are also included in the beam element. The beam
element has 18 variables.

A fundamental modelling di!erence with the present theory is that Koko et al. [15] allow
for in-plane displacements of the plate, whereas the present theory assumes pure bending
deformation of the plate; however, such e!ects are expected to be small for thin plates. Plate
super-elements generally correspond to the domain comprised between adjacent sti!eners
(Type I mesh); in some cases, Koko et al. use 2]2 super-elements to model these inter-
sti!ener domains (Type II mesh).

The comparisons presented hereafter correspond to the structural con"gurations shown
in Figure 9. In all cases, the plate is clamped on its four sides; in the context of the
hierarchical trigonometric functions, the case of a clamped plate is realized by removing in
the Rayleigh}Ritz expansion those functions whose value or "rst derivative value is zero on
the plate edges. For case 1, the plate has a thickness h"1)27mm, the plate and sti!eners
material characteristics are E"68)9GPa, o"2670 kg/m3, l"0)3, and two di!erent
sti!ener sections are considered: either a &&full'' sti!ener (rectangular cross-section with
height 11)33mm and width 6)35mm), or a &&reduced'' sti!ener (rectangular cross-section
with height 8)28mm and width 4)93mm).

For case 2, the plate characteristics are the same but two di!erent sti!ener sections are
considered: either a &&full'' sti!ener (rectangular cross-section with height 16)53mm and
width 2)29mm), or a &&reduced'' sti!ener (rectangular cross-section with height 11)43mm
and width 1)85mm).



TABLE 4

Eigenfrequencies for case 1

Natural frequencies (Hz)

Sti!ener Mode Unsti!ened Present Koko [15] FE [15] Experiment [15]

Full rib 1 292.8 727.8 736.8 718.1 689.0
2 597.2 783.2 769.4 751.4 725.0
3 597.6 1015.5 1019.6 997.4 961.0
4 881.3 1033.8 1032.3 1007.1 986.0
5 1071.3 1450.0 1483.7 1419.8 1376.0
6 1076.6 1457.9 1488.3 1424.3 1413.0

Reduced rib 1 292.8 671.2 679.1 670.7 627.0
2 597.2 744.4 716.9 724.0 662.0
3 597.6 984.6 990.1 977.2 924.0
4 881.3 1027.2 1022.9 1002.1 953.0
5 1071.3 1434.4 1469.3 1408.7 1370.0
6 1076.5 1451.9 1442.3 1414.1 1338.0

TABLE 5

Eigenfrequencies for case 2

Natural frequencies (Hz)

Sti!ener Mode Unsti!ened Present Koko [15] FE [15] Experiment [15]

Full rib 1 271.4 949.3 1072.8 965.3 909.0
2 553.6 1265.8 1334.2 1272.3 1204.0
3 554.0 1331.8 1410.3 1364.3 1319.0
4 816.9 1464.0 1483.2 1418.1 1506.0
5 993.0 1572.7 1649.2 1602.9 1560.0
6 997.9 1739.9 1730.5 1757.1 1693.0

Reduced rib 1 271.4 923.6 938.5 928.6 859.0
2 553.6 1202.4 1178.6 1205.1 1044.0
3 554.0 1236.1 1182.4 1229.8 1292.0
4 816.9 1264.7 1330.4 1274.6 1223.0
5 993.0 1540.5 1569.8 1557.4 1503.0
6 997.9 1696.9 1674.5 1714.5 1650.0
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For cases 3 and 4, the plate has a thickness 1)37mm, the plate and sti!eners material
characteristics are E"71GPa, o"2700kg/m3, l"0)3, and the sti!eners have
a rectangular cross-section with height 11)3 mm and width 6)35mm.

Koko et al. [15] have also reported experimental values of the natural frequencies in the
above con"gurations, as well as the natural frequencies obtained from "nite element
calculations. Tables 4}6 show the eigenfrequencies obtained from the various methods.

The agreement of the present approach with the numerical and experimental results
reported by reference [15] is good.



TABLE 6

Eigenfrequencies for case 3

Mode Unsti!ened Present Koko mesh I Koko mesh II

1 221.8 828.4 846.8 838.2
2 342.5 832.5 846.1 841.6
3 543.0 851.8 849.4 844.2
4 546.4 862.3 862.0 858.4
5 655.4 1298.9 1448.0 1254.3
6 828.2 1336.4 1354.6
7 847.1 1344.0 1347.3
8 1029.1 1352.5 1353.6
9 1118.0 1596.1 1503.0

Figure 10. Con"gurations of the experimental sti!ened plates: (a) case 1, (b) case 2.
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6.3. COMPARISON WITH EXPERIMENTAL RESULTS

Experiments have been conducted to measure the response of sti!ened plates under
a point-force excitation. The experimental con"gurations are shown in Figure 10. A base
plate of dimensions 480mm]420mm, thickness 3)22mm, made of aluminum (E"68)5GPa,
o"2680kg/m3, l"0)33) was considered, with two di!erent sti!ener con"gurations: either
one widthwise sti!ener (case 1) or two widthwise sti!eners (case 2); the sti!eners were cut in
standard &&T'' sections as shown in Figure 10 and bonded to the plate. The material
characteristics of the sti!eners are identical to those of the plate.

The plate was supported on strips of thin shim spring steel, one end of which was
mounted along the plate edges in a direction perpendicular to the plate surface; the other



Figure 11. Comparison with the experimental results for case 1 (1 sti!ener): *, experimental result; - - - ,
numerical result.

Figure 12. Comparison with the experimental results for case 2 (2 sti!eners): *, experimental result; - - - ,
numerical result.
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end of the strips was "xed into a rigid frame. Such supports have been shown to correctly
approximate simply supported boundary conditions [21]. The sti!ened plates were excited
by a shaker on which a stinger was mounted to approximate a transverse point-force
excitation; the shaker was fed by a pseudo-random noise in the 0}800 Hz frequency range.
The excitation point was located at x"80mm, y"70mm from a plate corner in all cases.
The magnitude F of the excitation force was measured, together with the magnitude of the



TABLE 7

Eigenfrequencies for case 4

Mode Unsti!ened Present Koko mesh I Koko mesh II

1 295.5 1135.3 1149.6 1141.7
2 602.7 1153.0 1152.5 1148.0
3 602.7 1153.0 1161.9 1157.4
4 888.8 1153.0 1161.9 1157.4
5 1080.7 2021.9 2042.1 1859.8
6 1085.8 2328.1 2348.0
7 1355.3 2328.5 2342.1
8 1355.3 2328.5 2342.1
9 1729.5 2330.0 2390.1
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transverse velocity <
i
, using a Doppler laser vibrometer. The panel is discretized

into n"361 (19]19) measurement points regularly spaced on the vibrating surface. The
response was then calculated in terms of the mean-square admittance of the structure,

10 log
10

+n
i/1
<2

i
2nF2

. (52)

Figures 11 and 12 show the comparisons between the experiments and the simulations for
cases 1 and 2 respectively. The simulation results have been obtained with one element
between consecutive sti!eners and 20]15 hierarchical functions over each element.

The agreement between the theory and the experiment is generally very good in case 1, up
to 500 Hz. There are more deviations in case 2, which corresponds to a much more sti!ening
con"guration than case 1. In general, the theory over-estimates the experimental resonance
frequencies in case 2; it is suspected that the actual junction conditions between the
sti!eners and the plate do not respect some of the theoretical continuity conditions (such as
the rotation continuity).

7. CONCLUSION

The vibration analysis of sti!ened plates using hierarchical "nite elements with a set of
trigonometric interpolation functions has been presented. The comparison of the present
approach with the literature and experimental results show good agreement. It was found
that, in general, more accurate results are obtained when using few discretization elements
and high order interpolation functions. The trigonometric functions naturally reproduce
free vibration shapes of plate elements comprised between sti!eners, which leads to well-
conditioned systems and the possibility of accurately calculating a large number of
vibration modes. This great numerical stability of the trigonometric functions and their
readiness for symbolic manipulations make them potentially attractive for vibration and
should radiation analysis in the mid-frequency range.
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